Abstract
Human life sustained for decades due to the availability of basic needs, and freshwater is one of them. However, groundwater quality is constantly under pressure. This can be attributed to anthropogenic activities not limited to urban areas but to rural zones. Machine learning methods like linear discriminant analysis (LDA), Classification and Regression Trees (CART), k-Nearest Neighbour (KNN), Support Vector Machines (SVM) and, Random Forest (RF) models were used to analyse groundwater quality variables. The mean accuracy of each classifier was calculated, and the obtained mean accuracies were 77.5% (LDA), 87% (CART), 96% (KNN), 93.5% (SVM) and 96% (RF). RF and KNN models were selected as optimal models with higher accuracy. This study made it apparent that machine learning algorithms can estimate and predict water quality variables with significant accuracy. In this study, the observations and variables were compared with the water quality index and drinking water limits provided by the Bureau of Indian Standards. The water quality index for each observation was calculated. If at least four variables have a higher value than prescribed limits, it was assigned a value of 1; if more than four variables reported higher values, it was assigned a value of 2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.