Abstract
Financial engineering is crucial for effectively combining finance with quantitative approaches. This study aims to forecast the performance of the Nasdaq stock market by considering numerous factors like wind, hydro, thermal, gas, and nuclear variables. To accomplish this, we utilize sophisticated predictive models, namely adaptive lasso (ALasso), elastic net (Enet), artificial neural network (ANN), convolutional neural network (CNN), and long short-term memory (LSTM). By using these advanced methods, our goal is to offer perceptive and precise predictions, which will enhance comprehension of the complex dynamics within the financial markets. The evidence suggests that the LSTM model has demonstrated superior accuracy in predicting changes in the Nasdaq stock market when compared to ALasso, Enet, ANN, and CNN. While ALasso, Enet, ANN, and CNN exhibit comparable RMSE and MAE values, their performance is slightly less competitive than that of the LSTM model. The marginal differences in RMSE (ALasso: 0.319, Enet: 0.317, ANN: 0.3, CNN: 0.32) and MAE (ALasso: 0.277, Enet: 0.276, ANN: 0.252, CNN: 0.278) emphasize the comparable effectiveness of various methods, but they somewhat drop below the LSTM model in terms of precision. The findings showed the significance of well-known and advanced ML techniques, particularly LSTM, for enhanced accuracy in financial market predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.