Abstract
Abstract Membrane bioreactors (MBRs) are a sewage treatment process that combines membrane separation with bioreactor technology. It has great advantages in sewage treatment. Membrane fouling hinders MBR process development, however. Studies have shown that the degree of membrane fouling can be judged using the membrane flux rate. In this study, principal component analysis was used to extract the main factors affecting membrane fouling, then the random forest algorithm on the Hadoop big data platform was used to establish an MBR membrane flux prediction model, which was tested. In order to verify the model's effectiveness, BP neural network and SVM support vector machine models were established using the same experimental data. The experimental results from the different models were compared, and the results showed that the random forest algorithm gave the best MBR membrane flux predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.