Abstract

Consumer-deviant behavior costs global utility firms USD 96 billion yearly, attributable to Non-Technical Losses (NTLs). NTLs affect the operations of power systems by overloading lines and transformers, resulting in voltage imbalances and, thereby, impacting services. They also impact the electricity price paid by the honest customers. Traditional meters constitute 98 % of the total electricity meters in India. This paper argues that while traditional meters have their limitation in checking consumer-deviant behavior, this issue can be resolved with ML-based algorithms. These algorithms can predict suspected cases of theft with reasonable certainty, thereby enabling distribution companies to save money and provide consistent and dependable services to honest customers at reasonable costs. The key learning from this paper is that even if data is noisy, it is possible to create a Machine Learning Model to detect NTL with 80 percentage plus accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.