Abstract
Classification of submerged objects has traditionally been performed using high frequency sonars and imaging techniques. While this permits fine matching of target templates to images acquired in the field, HF methods are necessarily limited in range due to absorption of sound by the water. LF sonars, while offering increased detection range, come with some significant challenges related to the limited bandwidth available. Nonetheless, we show that it is feasible to estimate object size using nonimaging techniques. There are a number of low‐frequency phenomena that can be exploited to this end. Among these are edge diffraction in which sharply angled facets of objects (“edges”) act like independent, radiating point sources, and helical waves, which can be set up in cylindrical objects. We show that with appropriate postprocessing of these returns, object edges can be localized thus allowing object extent to be assessed. In this paper, we describe our processing system, and then give results when this system is applied to over 40 sequences of returns from a rail system. In each sequence, a single solid, proud cylinder is insonified, and our system reports an estimate of cylinder length and radius. Histograms of these estimates cluster roughly around the true values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.