Abstract
In the present study, we used low-field nuclear magnetic resonance (LF-NMR) measurements and mercury intrusion porosimetry (MIP) to evaluate the influence of the water–binder (w/b) ratio, fly ash (FA) replacement and curing regimes on the pore structure of concrete. The main advantage of LF-NMR is that it is nondestructive and suitable for large concrete samples compared with other traditional methods, such as MIP, adsorption methods and scanning electron microscopy methods. Hence, the LF-NMR relaxometry method measures the pore structures that are closer to reality. The LF-NMR relaxation time, T2, represents the change in the pore structure during the hydration and hardening processes of concrete. The results showed that the T2 spectrum of the concrete sample was mainly composed of 3–5 signal peaks. Additionally, the w/b ratio, FA replacement and the curing regimes have significant effects on the T2 spectrum, porosity, and pore size distribution of concrete. In addition, the compressive strength of concrete has a close relationship with its pore structure. Based on the LF-NMR test results, the relationship between the compressive strength and the porosity, pore size distribution of concrete was established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.