Abstract
Bio-trickling filters (BTFs) use an inert filler to purify pollutants making them prone to clogging due to bacterial accumulation. To investigate the performance of a non-inert filler in BTF and its cooperation with insects to relieve clogging, a vertical BTF was constructed with a loofah/Pall ring/polydimethylsiloxane composite filler and selected bacteria to purify toluene. The BTF was started up within 17 d and restarted within 3 d after starvation for 12–16 d. Its average removal efficiency was >90% at steady state. The maximum elimination capacity of 86.4 g·(m3·h)−1 was obtained at a volume capacity of 96.2 g·(m3·h)−1. The introduction of holometabolous insects (Clogmia albipunctata) rapidly removed the biofilm and accelerated the degradation of the loofah, which alleviated clogging. Furthermore, confocal laser scanning microscope (CLSM) observations showed that the biofilm polysaccharides were difficult to remove, while lipids were readily lost. Analysis of microbial diversity over time and space revealed that the dominant bacterium, Comamonas, was replaced by diverse microflora with no obvious dominant genus. Insect introduction and loofah migration had little effect on the evolution of microflora. This study provides a promising approach to operating BTFs with less clogging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.