Abstract
A sample of fullerol C60(OH)24 was synthesized. The basic physicochemical characterization of the synthesized fullerol was done. The non-isothermal kinetics of C60(OH)24 dehydroxylation has been investigated. The thermogravimetric curves have been recorded at different heating rates ranging from 5 to 25 K min−1. By application of the Kissinger–Akahira–Sunose isoconversion method, it was found that the activation energy complexly changes with the dehydroxylation degree. The possibility of mathematical description of the kinetics of fullerol dehydroxylation by logistic function was investigated. Fullerol dehydroxylation conversion curves were completely mathematically described by the linear combination of two logistic functions at all of the investigated heating rates. The changes in the values of parameters of logistic functions with heating rate were established. It was shown that complex kinetics of C60(OH)24 dehydroxylation consists of two consecutive dehydroxylation reactions (low-temperature and high-temperature components). The values of the kinetic parameters for two components of dehydroxylation process were calculated. A model for fullerol dehydroxylation has been discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.