Abstract
Finite difference and pseudo-spectral methods have been widely used in the numerical relativity to solve the Einstein equations. As the third major category method to solve partial differential equations, finite element method is less frequently used in numerical relativity. In this paper, we design a finite element algorithm to solve the evolution part of the Einstein equations. This paper is the second one of a systematic investigation of applying adaptive finite element method to the Einstein equations, especially aiming for binary compact objects simulations. The first paper of this series has been contributed to the constrained part of the Einstein equations for initial data. Since applying finite element method to the Einstein equations is a big project, we mainly propose the theoretical framework of a finite element algorithm together with local discontinuous Galerkin method for the Einstein equations in the current work. In addition, we have tested our algorithm based on the spherical symmetric spacetime evolution. In order to simplify our numerical tests, we have reduced the problem to a one-dimensional space problem by taking the advantage of the spherical symmetry. Our reduced equation system is a new formalism for spherical symmetric spacetime simulation. Based on our test results, we find that our finite element method can capture the shock formation which is introduced by numerical error. In contrast, such shock is smoothed out by numerical dissipation within the finite difference method. We suspect this is partly the reason that the accuracy of finite element method is higher than the finite difference method. At the same time, different kinds of formulation parameters setting are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.