Abstract

Volcanic-associated massive sulphide deposits in the Snow Lake area of Manitoba are related to mineralogically and chemically distinct alteration zones. It is generally accepted that these zones represent crosscutting, subconformable or conformable synvolcanic alteration zones, which were coeval with and have been metamorphosed with the massive sulphides. Metamorphism ranges from upper greenschist facies to middle amphibolite facies. Surface lithogeochemical anomalies led to the discovery of small massive sulphide lenses at a vertical depth of 250 m in the Raindrop Lake area, southwest of Snow Lake, Manitoba. Variations in mineral assemblages of middle amphibolite facies alteration zones and analysis of variations in major and trace element chemistry were used to guide deep drilling at Raindrop Lake. The massive sulphide lenses are stratigraphically underlain by a low angle crosscutting “pipe” and a conformable footwall “apron” alteration. The alteration zones are composed of assemblages of garnet, staurolite and chlorite, and, less significantly, biotite, muscovite and kyanite. They are characterized by loss of Na and Ca, and addition of Fe, Mg, Cu and Zn. Mapping the alteration is aided by the application of the metamorphic AFM phase diagram for the appropriate metamorphic facies. Increasing intensity of alteration can be identified by the first appearance of new mineral phases, which are represented on the AFM diagram. These mineral trends coincide with loss of Na and Ca relative to Al, and increased Mg and Fe. Chemical alteration indices ACNK (molecular proportion Al 2O 3/(CaO + Na 2O + K 2O) and AI = 100 × [(MgO + K 2O)/(MgO + K 2O + CaO + Na 2O)] combined with Cu and Zn variation helped to quantify the intensity of alteration, despite being insensitive to Fe. The crosscutting pipe is dominantly Fe enriched, with a Cu-enriched core, Zn enriched margins and widespread Na and Ca depletion. Mineralogically it is identified by garnet, staurolite and chlorite and follows an iron and aluminum enrichment trend on the AFM diagram. The conformable alteration zone is characterized by local strong Mg enrichment, extensive Na and Ca depletion and variable Cu and Zn. Mineralogically it is characterized by the presence of chlorite and kyanite and follows a magnesium and aluminum enrichment trend on the AFM diagram.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call