Abstract

AbstractApplication of the methods of control theory to industrial problems demands a match of the necessary computational tools to the actual financial constraints. The development of suboptimal control algorithms allows performance gains that were limited in the past to installations with extensive computer facilities to be reached now by smaller ones. Advances in this domain lead naturally to a rational use of modern control tools based on mini‐ and microcomputers. Within this framework, we present a general method for the optimal control of electric power plants. The optimization problem is described and formulated as the optimal control of a multivariable state‐space model in which the state and control vectors are constrained by sets of equality or inequality relations. The solution is obtained in two steps with linear and dynamic programming methods; the results are expressed in the form of parametric algorithms which set up the working point of the turbine‐generator units so that the resulting profit represents a maximum. The application of the method to the optimization of the production of a Swiss electricity company illustrates the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.