Abstract

Based on Lie group and Lie algebra theory, the basic principles of Lie group analysis of differential equations in mechanics are analyzed, and its validity in theory of plasticity is explained by example. For the plastic torsion of rod with variable cross section that consists in non-linear Saint Venant-Mises yield criterion, the 10-dimensional Lie algebra admitted by the equilibrium equation and yield criterion is completely solved, and invariants and group invariant solutions relative to different sub-algebras are given. At last, physical explanations of each group invariant solution are discussed by some types of transformations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.