Abstract
In the present study, design of intelligent numerical computing through backpropagated neural networks (BNNs) is presented for numerical treatment of the fluid mechanics problems governing the dynamics of magnetohydrodynamic fluidic model (MHD-NFM) past a stretching surface embedded in porous medium along with imposed heat source/sink and variable viscosity. The original system model MHD-NFM in terms of PDEs is converted to nonlinear ODEs by introducing the similarity transformations. A reference dataset for BNNs approach is generated with Adams numerical solver for different scenarios of MHD-NFM by variation of parameter of viscosity, parameter of heat source and sink, parameter of permeability, magnetic field parameter, and Prandtl number. To calculate the approximate solution for MHD-NFM for different scenarios, the training, testing, and validation processes are conducted in parallel to adapt neural networks by reducing the mean square error (MSE) function through Levenberg–Marquardt backpropagation. The comparative studies and performance analyses through outcomes of MSE, error histograms, correlation and regression demonstrate the effectiveness of proposed BNNs methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.