Abstract

Through a case study, the use of LC–MS n technique in conjunction with a mechanism-based stress study is shown to be a very effective way in the rapid elucidation of unknown drug impurities. In this case, the drug substance sample was first analyzed using LC–MS n through which the unknown species was found to be a valeryl-containing, isomeric impurity of the active pharmaceutical ingredient (API), betamethasone 17-valerate, based on its molecular ion and major fragments. Since a substantial knowledge regarding a large number of isomeric impurities of betamethasone has been accumulated in the literature as well as in our laboratory, a hydrolytic stress study (forced degradation) of the isolated unknown species was then designed and carried out accordingly in order to remove the valeryl group from the unknown species. During the stress study, a betamethasone isomer was generated as expected. However, a new unknown species isomeric to betamethasone 17-valerate was also formed unexpectedly. By comparing the UV spectra and more importantly MS n fragmentation patterns of the two newly formed species with those of betamethasone, dexamethasone, betamethasone 17-valerate, and betamethasone 21-valerate, these two unknown species generated in the stress study were identified as dexamethasone and dexamethasone 21-valerate, respectively. Based on the plausible reaction mechanism of the forced degradation, the original impurity present in betamethasone 17-valerate drug substance was then identified as dexamethasone 17-valerate; the structure assignment was later confirmed by various 1D and 2D NMR experiments. The efficient conversion from dexamethasone 17-valerate to dexamethasone 21-valerate was also observed during a 2D NMR acquisition of the isolated dexamethasone 17-valerate sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.