Abstract

Because of the presence of corner eddies that change in number and pattern the lid-driven cavity problem has been found suitable to study various aspects of the performance of solution algorithms for incompressible viscous flows. It retains all the difficult flow physics and is characterized by a large primary eddy at the centre and secondary eddies located near the cavity corners. In this work, lid-driven cavity flow is simulated by lattice Boltzmann method with single-relaxation-time and it is compared with those by lattice Boltzmann method with multi-relaxation-time and finite difference method. The effects of the Reynolds number on the size, centre position and number of vortices are studied in detail together with the flow pattern in the cavity. The close agreement of the results bears testimony to the validity of this relatively new approach. However lattice Boltzmann method with multi-relaxation-time model is seen to remove the difficulties faces by the lattice Boltzmann method with single-relaxation-time at higher Reynolds numbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call