Abstract

A laser-based transfer technique, termed matrix assisted pulsed laser evaporation direct write (MAPLE DW), has been modified to rapidly and accurately deposit mammalian cells in a non-contact manner. While this technology was originally developed for deposition of inorganic materials, it has shown the ability to transfer of a wide range of biological materials. Two types of mammalian cells, human osteosarcoma and rat cardiac cells were deposited into a biopolymer matrix via MAPLE DW. Current results show that it is possible to deposit cells in a stepwise manner and build cellular ‘stacks’ 50–100 μm tall. Furthermore, the technique is now capable of depositing cells with near single cell resolution. Post-transfer results of live/dead viability/cytotoxicity assays show that the cells are unaffected by the process with near 100% viability. The ability to build cellular structures in three dimensions and deposit small numbers of cells accurately has potential application to tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.