Abstract

A stand-off laser-induced breakdown spectroscopy (LIBS) system was developed to determine the elemental composition of contamination particles during semiconductor manufacturing. It successfully detected laboratory-generated monodisperse (size=200 nm and 300nm) CaCl2 particles and internally mixed particles of CaCl2, MgCl2, NaCl, and KCl. Temperature and pressure effects on the LIBS emission signals were investigated. The peak area and signal-to-noise ratio of the emission lines increased with the temperature (25°C-250°C). Stronger emission lines were observed at higher pressure. Although temperature and pressure affect the LIBS signals, the developed stand-off LIBS could be employed for real-time detection of the elemental composition of contamination particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.