Abstract

In this study, the Lagrange’s equations of motion for a 2D double spring-pendulum with a time-dependent spring extension have been derived and solved approximately. The resulting equations are also solved numerically using Maple, and plots of motion for the pendulum bobs m1 and m2 are presented and compared. It was observed that motion along the x-axis is characterized by sine wave function while motion along y-axis is characterized by cosine wave function with slightly changing amplitudes. Change in stiffness constant, angle of deflection, mass of pendulum bob and spring length were found to have significant effect on the dynamics of the double spring-pendulum. The periodic and chaotic behaviour noticed in this study is consistent with current literature on spring-pendulum systems. Keywords: Lagrange equations, double spring-pendulum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.