Abstract
The calculation of tooth wear under mixed elastohydrodynamic lubrication is very complex and requires consideration of many conditions such as load distribution in the tooth meshing zone, micro-convex elastoplastic deformation and tooth surface temperature. The accurate calculation of tooth wear requires a lot of time and effort. In order to calculate tooth face wear under mixed elastomeric flow lubrication quickly and accurately, a new proxy model of tooth face wear is developed using the Kriging method. The pressure distribution required for the wear calculation was obtained utilizing the modified Reynolds equation and ZMC elasto-plastic model. The numerical calculation model of gear wear was derived using the modified Archard wear model. The Kriging model was used to construct a proxy model between gear parameters and tooth wear, and the degree of approximation and goodness of fit of the Kriging model were investigated. The results are as follows. The wear depth at each position is different, the smallest at the pitch, the largest near the tooth root, and the pinion has a larger wear depth than the gear. The Kriging model is highly efficient and accurate in its computation and overcomes the shortage of excessive time spent on the calculation of numerical calculation models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.