Abstract

Abstract Recovery of magnetic target parameters from magnetic sensor measurements has attracted wide interests and found many practical applications. However, difficulties present in identifying the permanent magnetization due to the complications of magnetization distributions over the ship body, and errors and noises of measurement data degrade the accuracy and quality of the parameter identification. In this paper, we use a two step sequential solutions to solve the inversion problem. In the first step, a numerical model is built and used to determine the induced magnetization of the ship. In the second step, we solve a type of continuous magnetization inversion problem by solving 2D Fredholm integral equation of the 1st kind. We use parallel computing which allows solve the inverse problem with high accuracy. In additional, Tikhonov regularization has been applied in solving the inversion problems. The proposed methods have been validated using simulation data with added noises.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.