Abstract

Non-point source pollution is a major factor in excessive nutrient pollution that can result in the eutrophication. Land use/land cover (LULC) change, as a result of urbanization and agricultural intensification (e.g., increase in the consumption of fertilizers), can intensify this pollution. An informed LULC planning needs to consider the negative impacts of such anthropogenic activities to minimize the impact on water resources. The objective of this study was to inform future land use planning by considering nutrient reduction goals. We modeled the LULC dynamics and determined the capacity for future agricultural development by considering its impacts on nitrate runoff at a watershed scale in the Tajan River Watershed in northeastern Iran. We used the Soil and Water Assessment Tool (SWAT) to simulate the in-stream nitrate concentration on a monthly timescale in this watershed. Historical LULCs (years 1984, 2001 and 2010) were derived via remote sensing and were applied within the Land Change Modeler to project future LULC in 2040 under a business-as-usual scenario. To reduce nitrate pollution in the watershed and ecological protection, a conservation scenario was developed using a multi-criteria evaluation method. The results indicated that the implementation of the conservation scenario can substantially reduce the nitrate runoff (up to 72%) compared to the business-as-usual scenario. These results can potentially inform regional policy makers in strategic LULC planning and minimizing the impact of nitrate pollution on watersheds. The proposed approach can be used in other watersheds for informed land use planning by considering nutrient reduction goals.

Highlights

  • Introduction conditions of the Creative CommonsEvaluating likely changes in water quantity and quality in the future is important for informed planning and adaptive management

  • Critical to project the impact of forest loss on water quantity and quality in these countries

  • This paper presented an approach for informed land use planning by considering water quality reduction goals

Read more

Summary

Introduction

Introduction conditions of the Creative CommonsEvaluating likely changes in water quantity and quality in the future is important for informed planning and adaptive management. While the loss of forests is a global concern, their loss is a bigger concern in developing countries since it can lead to more adverse impacts due to the limited synergy among the authorities and stakeholders, the reliance on traditional management strategies for pollution and flood mitigation and limited resources to study and manage these impacts [2]. It is, critical to project the impact of forest loss (as a result of conversion to other LULCs) on water quantity and quality in these countries

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.