Abstract

In this paper, we study the consistency of the regularized least-square regression in a general reproducing kernel Hilbert space. We characterize the compactness of the inclusion map from a reproducing kernel Hilbert space to the space of continuous functions and show that the capacity-based analysis by uniform covering numbers may fail in a very general setting. We prove the consistency and compute the learning rate by means of integral operator techniques. To this end, we study the properties of the integral operator. The analysis reveals that the essence of this approach is the isomorphism of the square root operator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.