Abstract

Inhibitor titrations were applied to characterize functional changes in mitochondrial energy metabolism in the skeletal muscle of patients with mitochondrial diseases. For this we titrated the maximal mitochondrial respiration rate of saponin-skinned muscle fibers isolated from the skeletal muscle biopsy with the specific inhibitors of mitochondrial oxidative phosphorylation complexes I, IV and V-rotenone, azide and oligomycin. For three patients with deletions of mitochondrial DNA and one patient with a complex I deficiency the titrations revealed at rather normal respiration activities of saponin-skinned fibers significant differences to healthy controls: (i) The inhibitor titration curves of the affected enzyme were much steeper and (ii) for almost complete inhibition of respiration a smaller amount of the inhibitor is necessary. The detailed analysis of the titration curves within the framework of metabolic control theory indicated elevated flux control coefficients of the respective complex of respiratory chain. On the other hand, for one patient with a mitochondrial DNA depletion syndrome, decreased respiration activities of skinned fibers but no redistribution of flux control was observed. We conclude, therefore, that application of inhibitor titrations and the quantitative description of the titration curve can be a valuable approach to elucidate functional defects of mitochondrial oxidative phosphorylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.