Abstract
Establishing blood vessel patency in neurovascular surgery is an essential component in treating cerebrovascular disorders. Given the difficulty in confirming complete obliteration of the aneurysm sac, ICG videoangiography has emerged as an intraoperative tool that provides neurosurgeons immediate feedback on the status of vessel flow, allowing for surgical modifications to be made without delay. ICG initially emerged as a tool for assessing hepatic, cardiac, and retinovascular function. It is an inert compound with a high affinity for plasma proteins and fluorescence properties making it the ideal candidate for assessment of vessel patency in neurovascular procedures. Requiring only a bolus peripheral vein injection and integration of a near-infrared imaging device into the surgical microscope, ICG can be visualized without disrupting operating room workflow or the surgical field. Quick response time, high-spatial resolution, and low complication rates are features of ICG videoangiography that prove advantageous when compared to the gold standard intra- and postoperative digital subtraction angiography (DSA). Despite this, ICG is not without limitations, specifically in the setting of atherosclerotic vessels, giant, and complex aneurysms. Additionally, there are instances where DSA may prove superior in detecting vessel stenosis and outflow obstruction, prompting the recommendation of ICG as an adjunct to, rather than complete replacement of DSA. In this article, the authors provide a brief overview of the biochemical properties and historical origins of ICG viedoangiography in addition to discussing its current application in aneurysm surgery.
Highlights
Indocyanine green (ICG) is a fluorescent compound that has been utilized for decades in a variety of medical applications
With regards to aneurysm surgery, ICG angiography is often contrasted with other intraoperative monitoring techniques such as digital subtraction angiography (DSA) [5], intraoperative computed tomography [6], and microvascular doppler sonography [7], with these studies concluding that ICG angiography should complement rather than replace these alternative imaging methods
A recent systematic review meta-analysis concluded that ICG videoangiography should serve only a complementary role to DSA rather than fully replace it given a 6.1% rate of mis-clippings not detected by ICG angiography among 1,465 clipped aneurysms as compared to a 4.5% rate of mis-clippings not detected by DSA among 849 clipped aneurysms [5]
Summary
Given the difficulty in confirming complete obliteration of the aneurysm sac, ICG videoangiography has emerged as an intraoperative tool that provides neurosurgeons immediate feedback on the status of vessel flow, allowing for surgical modifications to be made without delay. ICG initially emerged as a tool for assessing hepatic, cardiac, and retinovascular function. It is an inert compound with a high affinity for plasma proteins and fluorescence properties making it the ideal candidate for assessment of vessel patency in neurovascular procedures. The authors provide a brief overview of the biochemical properties and historical origins of ICG viedoangiography in addition to discussing its current application in aneurysm surgery
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.