Abstract

In a set of experiments on regulated contractile systems (i.e., in vitro motility assay with a reconstructed thin filament), the velocity of a thin filament on the surface coated with rabbit skeletal or rat cardiac myosin was estimated at various calcium ion concentrations in solution (pCa 4–8). The velocity versus pCa curve proved to be sigmoid. The velocity of a regulated thin filament at a saturating calcium concentration (pCa 4) exceeded that of a nonregulated thin filament by 65 and 87% for skeletal and cardiac myosin, respectively. The Hill coefficient was 1.95 and 2.5 for skeletal and cardiac muscles, respectively; this difference was discussed in terms of the different contributions of cooperativity mechanisms of contractile and regulatory proteins to the regulation of contraction in these types of muscle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.