Abstract

Thin-film interference filters, suitable for use on GaAs- and InP-based lasers, have been fabricated by use of the electron-cyclotron resonance plasma-enhanced chemical vapor deposition technique. Multilayer film structures composed of silicon oxynitride material have been deposited at low temperatures with an in situ rotating compensator ellipsometer for monitoring the index of refraction and thickness of the deposited layers. Individual layers with an index of refraction from 3.3 to 1.46 at 633 nm have been produced with a run-to-run reproducibility of 0.005 and a thickness control of 10 A. Several filter designs have been implemented, including high-reflection filters, one- and two-layer anitreflection filters, and narrow-band high-reflection filters. It is shown that an accurate measurement of the filter optical properties during deposition is possible and that controlled reflectance spectra can be obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.