Abstract

Deformation modulus of a rock mass is one of the crucial parameters used in the design of surface and underground rock engineering structures. Determination of this parameter by testing cylindrical core samples is almost impossible due to the presence of discontinuities. Due to the problems in determining the deformability of jointed rock masses at the laboratory-scale, various in situ test methods such as plate loading tests, dilatometer etc. have been developed. Although these methods are currently the best techniques, they are expensive and time-consuming, and present operational problems. To overcome this difficulty, in this paper, presents the results of the application of hybrid support vector regression (SVR) with harmony search algorithm , differential evolution algorithm and particle swarm optimization algorithm (PSO). The optimized models were applied to available data given in open source literature and the performance of optimization algorithm was assessed by virtue of statistical criteria. In these models, rock mass rating (RMR), depth, uniaxial compressive strength of intact rock (UCS) and elastic modulus of intact rock (Ei) were utilized as the input parameters, while the deformation modulus of a rock mass was the output parameter. The comparative results revealed that hybrid of PSO and SVR yield robust model which outperform other models in term of higher squared correlation coefficient (R2) and variance account for (VAF) and lower mean square error (MSE), root mean squared error (RMSE) and mean absolute percentage error (MAPE).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call