Abstract

In the optimization design process, particle swarm optimization (PSO) is limited by its slow convergence, low precision, and tendency to easily fall into the local extremum. These limitations make degradation inevitable in the evolution process and cause failure of finding the global optimum results. In this paper, based on chaos idea, the PSO algorithm is improved by adaptively adjusting parameters r1 and r2. The improved PSO is verified by four standard mathematical test functions. The results prove that the improved algorithm exhibits excellent convergence speed, global search ability, and stability in the optimization process, which jumps out of the local optimum and achieves global optimality due to the randomness, regularity, and ergodicity of chaotic thought. At last, the improved PSO algorithm is applied to vehicle crash research and is used to carry out the multiobjective optimization based on an approximate model. Compared with the results before the improvement, the improved PSO algorithm is remarkable in the collision index, which includes vehicle acceleration, critical position intrusion, and vehicle mass. In summary, the improved PSO algorithm has excellent optimization effects on vehicle collision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.