Abstract

<abstract> <p>In order to overcome the low accuracy of traditional Extreme Learning Machine (ELM) network in the performance evaluation of Rotate Vector (RV) reducer, a pattern recognition model of ELM based on Ensemble Empirical Mode Decomposition (EEMD) fusion and Improved artificial Jellyfish Search (IJS) algorithm was proposed for RV reducer fault diagnosis. Firstly, it is theoretically proved that the torque transmission of RV reducer has periodicity during normal operation. The characteristics of data periodicity can be effectively reflected by using the test signal periodicity characteristics of rotating machinery and EEMD. Secondly, the Logistic chaotic mapping of population initialization in JS algorithm is replaced by tent mapping. At the same time, the competition mechanism is introduced to form a new IJS. The simulation results of standard test function show that the new algorithm has the characteristics of faster convergence and higher accuracy. The new algorithm was used to optimize the input layer weight of the ELM, and the pattern recognition model of IJS-ELM was established. The model performance was tested by XJTU-SY bearing experimental data set of Xi'an Jiaotong University. The results show that the new model is superior to JS-ELM and ELM in multi-classification performance. Finally, the new model is applied to the fault diagnosis of RV reducer. The results show that the proposed EEMD-IJS-ELM fault diagnosis model has higher accuracy and stability than other models.</p> </abstract>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call