Abstract

The detection of hydrophobicity is an important way to evaluate the performance of composite insulator, which is helpful to the safe operation of composite insulator. In this paper, the image processing technology and Back Propagation neural network is introduced to recognize the composite insulator hydrophobicity grade. First, hydrophobic image is preprocessed by histogram equalization and adaptive median filter, then the image was segmented by Ostu threshold method, and four features associated with hydrophobicity are extracted. Finally, the improved Back Propagation neural network is adopted to recognize composite insulator hydrophobicity grade. The experimental results show that the improved Back Propagation neural network can accurately recognize the composite insulator hydrophobicity

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.