Abstract
Purpose The diagnosis and prediction methods used for estimating the health conditions of the bearing are of great significance in modern petrochemical industries. This paper aims to discuss the accuracy and stability of improved empirical mode decomposition (EMD) algorithm in bearing fault diagnosis. Design/methodology/approach This paper adopts the improved adaptive complementary ensemble empirical mode decomposition (ICEEMD) to process the nonlinear and nonstationary signals. Two data sets including a multistage centrifugal fan data set from the laboratory and a motor bearing data set from the Case Western Reserve University are used to perform experiments. Furthermore, the proposed fault diagnosis method, combined with intelligent methods, is evaluated by using two data sets. The proposed method achieved accuracies of 99.62% and 99.17%. Through the experiment of two data, it can be seen that the proposed algorithm has excellent performance in the accuracy and stability of diagnosis. Findings According to the review papers, as one of the effective decomposition methods to deal with nonlinear nonstationary signals, the method based on EMD has been widely used in bearing fault diagnosis. However, EMD is often used to figure out the nonlinear nonstationarity of fault data, but the traditional EMD is prone to modal confusion, and the white noise in signal reconstruction is difficult to eliminate. Research limitations/implications In this paper only the top three optimal intrinsic mode functions (IMFs) are selected, but IMFs with less correlation cannot completely deny their value. Considering the actual working conditions of petrochemical units, the feasibility of this method in compound fault diagnosis needs to be studied. Originality/value Different from traditional methods, ICEEMD not only does not need human intervention and setting but also improves the extraction efficiency of feature information. Then, it is combined with a data-driven approach to complete the data preprocessing, and further carries out the fault identification and classification with the optimized convolutional neural network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.