Abstract

This paper describes a novel, lightweight technique for significantly improving the low-frequency reflectivity performance of conventional geometric transition radar absorbent materials as used typically in anechoic chamber facilities for electromagnetic compatibility testing. The improvement is achieved by the inclusion of impedance-loading elements within the base region of the absorber, and these are implemented in the form of one or more frequency-selective surfaces (FSS). The discussion covers the design of the FSS using computer simulation technology microwave studio, its predicted effect on absorber performance at both normal and oblique incidence, the effect of manufacturing tolerances, and the fabrication and characterization of a prototype-loaded absorber panel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.