Abstract

On-line system incorporating a microcolumn of Muromac A-1 resin was used for the developing of method for preconcentration of trace elements followed by inductively coupled plasma (ICP) atomic emission spectrometry determination. A chelating type ion exchange resin has been characterized regarding the sorption and subsequent elution of 24 elements, aiming to their preconcentration from water samples of different origins. The effect of column conditioning, pH and flow rate during the preconcentration step, and the nature of the acid medium employed for desorption of the retained elements were investigated. A sample (pH 5) is pumped through the column at 3 ml min −1 and sequentially eluted directly to the ICP with 3 M HNO 3/HCl mixtures. In order to remove residual matrix elements from the column after sample loading a short buffer wash was found to be necessary. The effectiveness of the matrix separation process was illustrated. The procedure was validated by analyzing several simple matrices, Standard River water sample as well as artificial seawater. Proposed method can be applied for simultaneous determination of In, Tl, Ti, Y, Cd, Co, Cu and Ni in seawater and for multielement trace analysis of river water. Recovery at 1 μg l −1 level for the determination of investigated 24 elements in pure water ranged from 93.1 to 96% except for Pd (82.2%) and Pb (88.1%). For the same concentration level for seawater analysis recovery was between 81.9 and 95.6% except for Hg (38.2%).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call