Abstract

Each bioactive compound induces phenotypic changes in target cells that can be made visible by labelling selected molecules of the cells with fluorescent dyes and/or directly observed under the high-throughput microscope. A comparison of the cellular phenotype induced by a compound of interest with known cellular targets allows predicting its mode of action. Over the past 15 years, high-throughput microscopy has been one of the fastest growing fields in cell biology. When combined with automated multiparametric image and data analysis, it is referred to as high-content screening (HCS). Whilst HCS has been successfully applied to the bioactivity characterization of natural products, recent studies used automated microscopy and software to increase speed and to reduce subjective interpretation. In 2017, Institute of Natural Products Chemistry (INPC-VAST) has been equipped with a HCS platform (Olympus Scan^R) that designed for fully automated image acquisition and analysis of biological samples to visually inspect the cellular morphology induced by hit compounds as well as to discriminate from false positives. Accordingly, this short review covers the concepts of HCS and its application in screening of biologically active natural products whose molecular targets could be identified through such approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.