Abstract
The post-dryout flow regime transition criterion from inverted annular flow (IAF) to agitated inverted annular flow (AIAF) is suggested based on the hyperbolicity breaking concept. The hyperbolicity breaking represents a bifurcation point where a sudden flow transition occurs. The hyperbolicity breaking concept is applied to describe the flow regime transition from IAF to AIAF by the growth of disturbance on liquid core surface. The resultant correlation has the similar form to Takenaka's empirical one. To validate the proposed model, it is applied to predict Takenaka's experimental results using R-113 refrigerant with four different tube diameters of 3, 5, 7 and 10mm. The proposed model gives accurate predictions for the tube diameters of 7 and 10mm. As the tube diameter decreases, the differences between the predictions and the experimental results slightly increase. The flow regime transition from AIAF to dispersed flow (DF) is described by the drift flux model. It is shown that the transition criterion can be well predicted if the droplet sizes in dispersed flow are evaluated appropriately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.