Abstract

An amperometric glucose biosensor based on an n-alkylamine-stabilized palladium nanoparticles (PdNPs)-glucose oxidase (GOx) modified glassy carbon (GC) electrode has been successfully fabricated. PdNPs were initially synthesized by a biphase mixture of water and toluene method using n-alkylamines (dodecylamine, C 12-NH 2 and octadecylamine, C 18-NH 2) as stabilizing ligands. The performance of the PdNPs-GOx/GC biosensor was studied by cyclic voltammetry. The optimum working potential for amperometric measurement of glucose in pH 7.0 phosphate buffer solution is −0.02 V ( vs. Ag/AgCl). The analytical performance of the biosensor prepared from C 18-PdNPs-GOx is better than that of C 12-PdNPs-GOx. The C 18-PdNPs-GOx/GC biosensor exhibits a fast response time of ca. 3 s, a detection limit of 3.0 μM (S/N = 3) and a linear range of 3.0 μM–8.0 mM. The linear dependence of current density with glucose concentration is 70.8 μA cm −2 mM −1. The biosensor shows good stability, repeatability and reproducibility. It has been successfully applied to determine the glucose content in human blood serum samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.