Abstract

The benefits and disadvantages of hydrochar incorporation into soil have been heavily researched. However, the effect of hydrochar application on the soil microbial communities and the molecular structure of native soil organic carbon (SOC) has not been thoroughly elucidated. This study conducted an incubation experiment at 25 °C for 135 days using a soil column with 0.5 and 1.5% hydrochar-amended paddy soil to explore the interconnections between changes in soil properties and microbial communities and shifts in native SOC structure using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) and NMR after hydrochar application. Hydrochar addition decreased the labile SOC fraction by 15.6-33.6% and increased the stable SOC fraction by 10.3-27.0%. These effects were significantly stronger for 1.5% hydrochar-treated soil. Additionally, hydrochar addition induced the native SOC with 1.0-3.0% more carbon and 6.0-13.0% higher molecular weight. The SOC in hydrochar-amended soil contained more aromatic compounds but fewer carbohydrates and lower polarity. This was resulted by a statistically significant reduction in Sphingobacterium, which was active in polycyclic aromatic hydrocarbon degradation, and an increase in Flavobacterium, Anaerolinea, Penicillium, and Acremonium, which were the efficient decomposers of labile SOC. These findings will help elucidate the potential influence of hydrochar on the carbon biogeochemical cycle in the soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call