Abstract

In the polish underground copper mines owned by KGHM Polska Miedz S.A, various types of room and pillar mining systems are used, mainly with roof deflection, but also with dry and hydraulic backfill. One of the basic problems associated with the exploitation of copper deposits is rockburst hazard. Aa high level of rockburst hazard is caused by mining the ore at great depth in difficult geological and mining conditions, among others, in the vicinity of remnants. The main goal of this study is to investigate how hydraulic backfill improves the geomechanical situation in the mining filed and reduce rockburst risk in the vicinity of remnants. Numerical modeling was conducted for the case study of a mining field where undisturbed ore remnant, 40 m in width, was left behind. To compare the results, simulations were performed for a room and pillar mining system with roof deflection and for a room and pillar mining system with hydraulic backfill. Results of numerical analysis demonstrate that hydraulic backfill can limit rock mass deformation and disintegration in the mining field where remnants have been left. It may also reduce stress concentration inside or in the vicinity of a remnant, increase its stability, as well as prevent and reduce seismic and rockburst hazards. Hydraulic backfill as a local support stabilizes the geomechanical situation in the mining field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call