Abstract

A new method involving the combined use of the Laplace transform and the finite-difference method is applicable to two- and three-dimensional linear transient heat conduction problems. The method removes the time dependences from the governing differential equations and boundary conditions by using the Laplace transform and then solves the transformed equations with the finite-difference method. The transformed temperature is inverted by the method of Honig and Hirdes to obtain the result in the physical quantity. The results are compared in tables with exact solutions and other numerical data, and the agreement is found to be good. The method can also be used to calculate the specific nodal temperature at a specific time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.