Abstract

The research in path planning is very intense in the field of robotics. Researchers around the world are interested in developing various methods to establish the path between a start and goal points in an obstacle-cluttered environment. In the present manuscript, the authors have proposed a solution methodology using fast marching method hybridized with regression search (FMMHRS) to generate an optimal path between the start and goal points in real time. Initially, the path is developed by using a fast marching method (FMM), and later on a regression search algorithm is employed to optimize the path obtained using FMM algorithm. In this work, the efficiency of the developed path planner is tested in simulations. Further, an experimental work is carried out in real-world environment on a two-legged robot to ascertain the path, its length, travelling time and convergence speed of the said approach. It has been observed that the proposed method is found to be superior and efficient when compared with some of the approaches available in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call