Abstract

This research proposes a hybrid control algorithm to enhance smoothness in a vehicle’s motion. The control signal is synthesized from two separate controllers, Proportional Integral Derivative (PID) and Sliding Mode Control (SMC), to achieve superior control performance. The novelty of the proposed control algorithm lies in using a double-loop algorithm to determine the controller parameters. The algorithm proposed in this research involves two computational processes to determine the model’s optimal values including the raw value and the acceptable value. The proposed control algorithm has been simulated considering three specific cases corresponding to the three types of road stimuli. The results demonstrate that the values of sprung mass displacement and acceleration dropped considerably with the application of the proposed algorithm. Moreover, the change in vertical force at the wheel is also reduced with the application of the algorithm particularly in the third case where the vertical force at the wheel has reached to zero. The average values of vehicle body displacement are found to be 166.17 mm (for passive case), 54.20 mm (for PID), and 42.52 mm (for SMC). The proposed control algorithm managed to reduce this value to 8.95 mm as evidenced by simulation results. Finally, the response of the control system when subjected to an excitation signal from the road surface further demonstrates efficacy of the proposed hybrid control algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call