Abstract

DNA damage sensor proteins work as upstream components of the DNA damage checkpoint signaling pathways that are essential for cell cycle control and the induction of apoptosis. hRad9 is a member of a family of proteins that act as DNA damage sensors and plays an important role as an upstream regulator of checkpoint signaling. We clarified the significant accumulation of hRad9 in the nuclei of tumor cells in surgically-resected non-small-cell lung cancer (NSCLC) specimens and found the capacity to produce a functional hRad9 protein was intact in lung cancer cells. This finding suggested that hRad9 was a vital component in the pathways that lead to the survival and progression of NSCLC and suggested that hRad9 was a good candidate for a molecular target to control lung cancer cell growth. RNA interference targeting hRad9 was performed to examine this hypothesis. The impairment of the DNA damage checkpoint signaling pathway induced cancer cell death. hRad9 might be a novel molecular target for lung cancer treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.