Abstract
Fungal diseases are the main threat to crop yield and quality, often leading to huge economic losses. Chemical fungicides are almost useless to soil-borne and vascular fungal pathogens. The most effective way is crop resistance breeding by using resistance genes. Yet, for plants lacking resistance resources, new approaches are urgently needed for crop protection. Recently, host-induced gene silencing (HIGS) is developed based on the well-known RNA interference, and already effective against viruses and pests. However, it is challenging to validate HIGS in soil-borne fungal pathogens due to uncharacterized and complicated infection processes. Recently, we have made great progresses in revealing the infection structure of Verticillium dahliae, a soil-borne and vascular fungal pathogen that leads to verticillium wilt disease to many crops, including cotton plants. Moreover, we demonstrate that cotton exports endogenous microRNAs to inhibit virulence gene expression in V. dahliae. The most exciting achievement is the successful application of HIGS in cotton plants that confer resistance to V. dahliae. All these results reveal a promising potential for applying HIGS against a wide range of soil-borne fungi.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Sheng wu gong cheng xue bao = Chinese journal of biotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.