Abstract

Honeycomb structures are widely used in structural applications because of their high strength per density. Re-entrant honeycomb structures with negative Poisson's ratios may be envisaged to have many potential applications. In this study, an homogenization finite element method (FEM) technique developed for the analysis of spatially periodic materials is applied for the analysis of linear elastic responses of the regular and re-entrant honeycomb structures. Young's modulus of the regular honeycomb increased with volume fraction. Poisson's ratio of the regular honeycomb structure decreased from unity as volume fraction increased. The re-entrant honeycomb structure had a negative Poisson's ratio, its value dependent upon the inverted angle of cell ribs. Young's modulus of the re-entrant honeycomb structure decreased as the inverted angle of cell ribs increased. The results are in good agreement with previous analytical results. This homogenization theory is also applicable to three-dimensional foam materials — conventional and re-entrant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call