Abstract

A high-speed laser polarimetry technique, developed recently for the measurement of normal spectral emissivity of materials at high temperatures, was used to detect solid–solid and solid–liquid phase transformations in metals and alloys in millisecond-resolution pulse-heating experiments. Experiments were performed where normal spectral emissivity at 633 nm was measured simultaneously with surface radiance temperature, resistance, and/or voltage drop across the specimen. It was observed that a phase transformation, as indicated either by an arrest in the specimen radiance temperature or changes in the resistance and/or voltage drop, generally caused a change in normal spectral emissivity. Experiments were conducted on cobalt, iron, hafnium, titanium, and zirconium to detect solid–solid phase transformations. Similar experiments were also performed on niobium, titanium, and the alloy 85titanium–15molybdenum (mass%) to detect solid–liquid phase transformations (melting).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call