Abstract
A self-aligned focusing schlieren (SAFS) system combines the field of view of a conventional schlieren system with the defocus blur of a focusing schlieren system away from the object plane. It can be assembled in a compact form, measuring 1.2 m (4 ft) in length in the described case. The depth of field is sufficiently shallow to distinguish specific spanwise features in a supersonic flow field within a 76.2 mm (3 in) wide test section. As a result, the boundary-layer perturbations on windows and window-material defects and surface imperfections are blurred. Analytical forms are derived for depth of field and vignetting of the SAFS system. A laser spark velocity measurement in Mach 2 flow is performed by tracking the blast wave of a laser spark using 500 kHz SAFS imaging with a 200 ns optical pulse width. The flow Mach number and stagnation temperature are measured by comparing the blast-wave dynamics to an analytical solution. Additionally, schlieren image velocimetry is performed by analyzing natural flow perturbations in 500 kHz SAFS images using a self-correlation method. Comparing the spectra of gas density perturbations from the core flow and a near-wall region reveals a significant difference, with high-frequency prevalence at the boundary-layer location.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.