Abstract

In this paper, we use optical imaging fibers to fabricate a chemical and biochemical sensor that utilizes the ability of living cells to respond to biologically significant compounds. The sensor is created by randomly dispersing single NIH 3T3 mouse fibroblast cells into an optically addressable fiber-optic microwell array such that each microwell accommodates a single cell. The cells are encoded to identify their location within the array and to correlate changes or manipulations in the local environment to responses of specific cell types. The entire array can be simultaneously measured, yielding a rapid, repetitive, and high-density analysis method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.