Abstract

The Cedaya-S340 Holgutu Highway Construction Project is located in the Mongolian Autonomous Prefecture of Bayingolin in the Xinjiang Uygur Autonomous Region. It is an important traffic channel that connects Luntai County and Hejing County at the southern foot of Tianshan Mountains. As the major component of the highway project, the Huola Mountain Tunnel has a sharp topographic relief, and, therefore, commonly used land geophysical detection instruments cannot work on it. Therefore, we conducted a qualitative survey on the ground-to-air and airborne electromagnetic detection methods used at the Huola Mountain Tunnel site to provide basic data for the design of highway tunnels. The geophysical survey summarized the ground–airborne frequency-domain electromagnetic method (GAFEM) and the helicopter-borne time-domain electromagnetic method (HTEM) developed by Jilin University, and measured 15 measuring lines. Apparent resistivity imaging was performed for each section, and the results were consistent. This study comprehensively analyzed the apparent resistivity profile and geological mapping data. Then, the study inferred the major stratigraphic boundaries, fault fracture zones, rock fragmentation, weakness, karst development, and water content in accordance with background value, low-resistivity anomaly shape, low-resistivity anomaly value, and gradient value in the apparent resistivity profile. Finally, the study identified the scope of two main low-resistivity anomalies, located at the tunnel entrance and exit, respectively, which are basically consistent with the known fault location. The results of this study show that on the basis of the apparent resistivity maps of GAFEM and HTEM, the overall distribution law is basically consistent with site landform, hydrogeology, tectonic geology, and aerial image data. The results provide guidance for the construction of the Huola Mountain Tunnel and ensure the construction safety and progress of the tunnel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call