Abstract

Floods have become more severe and frequent as a result of climate change around the world, posing a hazard to public safety and economic development. This study investigates the use of distributed hydrological models in flash flood risk management in a small watershed in Hazara, Pakistan, with the goal of improving Pakistan's early warning lead time. First, the HEC-HMS model was built using geographic data and the river network's structure, then calibrated and verified using eight high rainfall events from 2013. demonstrating that the HEC-HMS model could simulate floods in the research area Second, given that rainfall and flood events have happened, this paper proposes an analysis approach for a flood forecasting and warning system, as well as criteria for sending urban-stream flash flood alerts based on rainfall, in order to provide sufficient lead time. The DEMs (digital elevation models) of the research regions were processed using HEC-Geo HMS, an ArcView GIS tool for catchment delineation, terrain pre-processing, and basin processing. The model was calibrated and verified using previously observed data. The proposed flood prediction and risk reduction methodology is nonstructural. The Hydrologic Modeling System (HEC-HMS), which provides a sufficient lead time forecast and computes the runoff/stage threshold conditions, is at the heart of the flood warning application. For flood risk assessment, data from the Pakistan Meteorological Department (PMD) is entered into a hydro-meteorological database and then into the HEC-HMS. A server-client application was utilised to visualise the real-time flood scenario and send out an early warning message. The outcomes of this study will be used to develop flood validation measures in the Hazara stream watershed to deal with potential flash floods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call