Abstract

Heated electrodes were applied for the non-isothermal operation of amperometric glucose biosensors based on glucose oxidase immobilised on the electrode surface by entrapment within a polymer layer. The localised deposition of the polymer film under simultaneous entrapment of the enzyme was achieved by an electrochemically induced pH-modulation in the diffusion zone in front of the electrode, thus altering the solubility of the polymer chains. This non-manual sensor preparation protocol could be successfully used for the modification of a novel indirectly heated electrode. The non-isothermal operating mode allows working at the optimum temperature of the enzyme sensors without any thermal distortion of the bulk solution. Increased surface temperature of the sensor thus accelerates transport as well as kinetic processes, resulting in an enhanced amperometric signal. In the presence of interfering compounds such as ascorbic acid, the proposed technique allows use of the diverging thermal impact on the sensing process, for different electrochemically active compounds, for a deconvolution of the amperometric signal at different electrode temperatures. A calculation method for determination of glucose in the presence of one interfering compound is presented as a basis for a calculative interference elimination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.